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ABSTRACT

Deep neural networks (DNN) have been successfully employed
for the problem of monaural sound source separation achieving
state-of-the art-results. In this paper, we propose using convolu-
tional recurrent neural network (CRNN) architecture for tackling
this problem. We focus on a scenario where low algorithmic delay
(≤ 10 ms) is paramount, and relatively little training data is avail-
able. We show that the proposed architecture can achieve slightly
better performance as compared to feedforward DNNs and long
short term memory (LSTM) networks. In addition to reporting
separation performance metrics (i.e., source to distortion ratios),
we also report extended short term objective intelligibility (ESTOI)
scores which better predict intelligibility performance in presence
of non-stationary interferers.

Index Terms— Source Separation, Low-latency, Deep Neural
Networks, Convolutional Recurrent Neural Networks.

1. INTRODUCTION

Source separation is a field of research which aims to solve the prob-
lem of separating an audio mixture into its constituent sounds orig-
inating from different sources. It is useful for various applications
like automatic speech recognition [1, 2], fundamental frequency es-
timation [3], etc., where it acts as an intermediary step which aids
in the final objective of the task. Separated sources can also used

In this paper, we focus on monaural sound source separa-
tion problem for applications where low processing latency is
paramount, e.g., hearing aids [4], cochlear implants [5, 2]. It is
postulated that window duration of around 20-40 ms in short time
Fourier transform (STFT) processed signals is preferred for speech
processing [6]. But for low-latency systems we need to work with
shorter window durations. In the context of digital hearing aid ap-
plications, low processing delay is regarded as a critical design fea-
ture [7]. For such applications, latencies as low as 3 ms have been
found to be detectable and anything larger than 10 ms have been
found to be objectionable [8]. There is therefore a need for sound
source separation algorithms which are experience algorithmic de-
lays ≤ 10 ms.

Recently deep neural network (DNN) based approaches for
sound source separation have become quite popular [9, 10, 11]
and different types of architectures for the task have been reported.
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Feedforward DNNs, e.g., reported in [9], are unable to utilize long
temporal contexts and whatever temporal context is deemed useful
has to be explicitly fed to the input in the form of stacked frames,
e.g., in [12]. They are also unable to explicitly utilize the spectro-
temporal structure present in time-frequency representation of au-
dio signal which is lost if stacked frames are used as input. The
need to infuse information from long temporal context motivates the
use of recurrent neural networks, as has been reported in [10, 11].
The need to preserve spectro-temporal structure motivates the use
of convolutional neural networks, which have been applied in con-
ventional form e.g., in [13] , or as convolutional encoder-decoder
networks, e,g, in [14, 15, 16]. However most of these methods have
been reported for algorithmic latencies ≥ 20 ms.

Previously, we have investigated the problem of low -latency
sound source separation for algorithmic latencies ≤ 20 ms using
non-negative matrix factorization [17] and feedforward deep neural
networks [12]. This paper takes that work forward and investigates
the potential of convolutional recurrent networks (CRNN)[18, 19]
for this problem. Such architectures have been successfully em-
ployed, e.g., in polyphonic sound event detection [19], music clas-
sification [20].

In this paper we compare convolutional recurrent networks
(CRNN) performance with feedforward DNNs and Long Short
Term Memory (LSTM) networks [21, 22]. Typically, machine and
deep learning techniques have been shown to directly benefit from
very large quantities of training data [23], although either this is
not always available, or costly to obtain. We therefore consider the
scenario where training data is limited, and attempt to maximize
performance in these cases. This is driven by a real-world applica-
tion for the techniques being developed by us for a project working
with hearing-impaired listeners (see Section 3.1). This user-centric
application also motivates the use of an estimated intelligibility met-
ric, as well as a purely energy based separation measures. we eval-
uate the performance of our approach using the extended short time
objective intelligibility metric (ESTOI) [24], an extension of pop-
ular short time objective intelligibility (STOI) metric [25] and is
postulated to be a better predictor of intelligibility in presence of
modulated noise/speech interferers (see Section 3.3).

The paper is organized as follows: Section 2 describes the
CRNN architecture along with the time-frequency masking scheme
utilized in this paper. Section 3 describes the evaluation procedure,
experimental design along with the acoustic material used in the
experiments. And finally, Section 4 concludes the paper.
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Figure 1: Block diagram of the proposed convolutional recurrent neural network architecture.

2. PROPOSED METHOD

The proposed method uses the time-frequency masking based
source separation paradigm [4] which involved prediction of time-
frequency masks corresponding to constituent sources present in
the mixture. These time-frequency masks when applied to mixture
spectrograms yield spectra of the constituent sources. Magnitudes
of short time Fourier transform (STFT) coefficients are used as fea-
tures. The neural network is trained in a supervised fashion (see
Section 3.2 for data generation) and mean square error (MSE) be-
tween target and estimated masks,

∑
t,f (M(t, f)−Mest(t, f))

2 is
used as the training objective function, where t and f are time and
frequency indices, respectively.

In order to maintain low latency operation, the proposed neural
network utilizes only past temporal context to predict mask corre-
sponding to the current frame. The algorithmic latency is limited by
the window size used for STFT processing.

2.1. Proposed neural network architecture

Convolutional recurrent neural networks (CRNN) are a combina-
tion of two kinds of neural network topologies: convolutional and
recurrent networks. The motivation behind combining the two is
to take advantage of the feature extraction capability of the former
with temporal modeling capability of the latter.

The proposed architecture is shown in Figure 1. Convolutional
layers form the front end of the network to which spectral features
Xi , i = 1, 2, ....n, are fed. Each input Xi is a (F ×T ) matrix con-
sisting of a sequence of T temporally continuous spectral feature
vectors, each of size F . The convolutional layer act as feature ex-
tractor employing (kr × kc) size convolutional kernel to efficiently
extract spectro-temporal features from the input. This procedure
can be thought of as convolving the input feature matrix with the
convolutional kernel and yields a (F × T ) size matrix called an
activation map or feature map. D such convolutional kernels are
used give a three dimensional output Yi of size (D×F ×T ). Note
that the convolution operation here is such that for tth frame of the
input, the convolution operation utilizes only previous time frames
in order to maintain the low latency operation. Figure 2 depicts this
process for 1 D convolution example. Yi is then fed to a pooling
layer where max pooling operation is done only over the frequency
axis. Max pooling operation reduces the size of the frequency axis
of each of the D feature maps from F to Fm, reducing the number
of parameters fed into the next layer. Several such convolutional
layers in combination of pooling layers can be employed.

The second component of a CRNN architecture is a recurrent
layer. Before feeding max pooled Yi into the recurrent layer, D
feature maps are stacked along the frequency axis such that for each

time step we now have D × Fm size feature vector. This operation
preserves the temporal continuity of the T frames and expands the
feature set for each time frame by a factor of D. In this paper,
we have used long short-term memory (LSTM) [22] units in the
recurrent layer. The recurrent layer takes a sequence of T frames
as input and produces a sequence of T output frames. Several such
recurrent layers can be employed. The output from the recurrent
layer is fed to a feedforward layer which is a timedistributed layer,
i.e., it processes each of the T frames independently of the other
frames, and serves as the output layer of the network.

2.2. Mask outputs and source reconstruction

We utilize soft time-frequency mask in this paper. For an acous-
tic mixture of two sources, mask corresponding to source 1 can be
expressed as,

M1(t, f) =
|S1(t, f)|

|S1(t, f)|+ |S2(t, f)|
, (1)

where S1 and S2 are STFT magnitudes corresponding to the con-
stituent sources. The model is trained with respected to source 1
hence the estimated mask M1

est(t, f) corresponds to source 1 and
mask corresponding to the other source is complement of it, i.e.,
M2

est = 1−M1
est. These estimated masks are then used to get com-

plex STFT spectra of the separated sources utilizing mixture phase.
The time domain constituent sources are then reconstructed using
inverse discrete Fourier transform (IDFT) and overlap add process-
ing.

3. EVALUATION

The section describes the acoustic material used in the experiments,
metrics used for evaluating separation performance of neural net-
work architectures, experimental design and finally the results ob-
tained.

3.1. Acoustic Material

The Danish hearing in noise test (HINT) dataset was used for eval-
uation which is an extended version of HINT dataset used in [26].
It consists of 13 lists of sentences each consisting of 20 five word
natural sentences. All audio files were recorded with a sampling
rate of 44.1 kHz. Three speaker pairs: M1 and F1, M1 and M2,
and, F1 and F2, were used in evaluation in order to cover all gender
combinations. This study is a part of a larger project to investi-
gate potential intelligibility benefits of sound separation methods
for hearing impaired listeners and the same dataset is used for sub-
jective listening experiments. It motivates using a restricted training
data in order to counter data memorization by listening test subjects
thereby reducing the efficacy of such tests. This study thus is useful
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Table 1: Best hyperparameters and number of trainable parameters for the selected FDNN, LSTM and CRNN architectures.

FDNN LSTM CRNN

hidden
layers

hidden
neurons

previous
context

hidden
layers

hidden
neurons

sequence
length

conv.
layers

recurr.
layers

recurr.
neurons

conv.
filters

pooling
scheme

sequence
length

4 1024 8 3 512 64 3 1 256 256 1 by 2 128

par. 3,904,593 5,208,581 4,089,681

for all situations where training data is not easily available. We use
lists L1 and L2 for training, lists L3 and L4 for validation, and lists
L7 and L8 for testing. This amounts to 40 sentences amounting to
around 80 seconds of audio data each for training and validation.

3.2. Training data generation

Each separation model was trained with data from each known
speaker in the pair on which it was to operate. All audio data was
resampled to 16 kHz before any further processing.

A limited amount of data was used for training (2 lists of 20
utterances per speaker from the Danish HINT corpus), and so care-
ful construction of training material from the audio data was re-
quired. The available training material was systematically mixed
in various permutations to attempt to make maximum use of the
available data, by repeatedly summing the entire training data for
each of the speakers within a training/test pair with a varying offset.
The offset was applied in the STFT domain, by circularly shifting
one source spectrogram (over time), with respect to the other, and
summing from the first frame. Resultantly, for each offset shift,
a novel set of training examples was produced. Initial validation
experiments showed that although not as effective at boosting per-
formance as increasing the quantity of initial training data, (e.g. us-
ing a greater fraction of the training corpus), modest improvements
could be achieved by augmenting the training data in this way, when
faced with a restricted quantity of training data. We used 50 shifts of
length Ts

50
, where Ts is the number of frames in the longer of the two

training spectrograms to produce our training data spectrograms.

Training features were produced from the training data spec-
trograms, such that the target output for a particular sequence of
input frames was the mask given by Equation 1. For the produc-
tion of all STFT features, an analysis window length 5 ms (80 sam-
ples at 16 kHz) was used with 50% overlap, resulting in a 5 ms
algorithmic latency.

Figure 2: 1-dimensional depiction of the convolution operation for
a single kernel as used in CNN layers.

3.3. Metrics

The separation performance of different neural network architec-
tures were evaluated using BSS-EVAL toolkit [27]. It consists of
three metrics: Source to Interference Ratio (SIR) and Source to Ar-
tifacts Ratio (SAR), for interference and artifact suppression, re-
spectively; and Source to Distortion ratio (SDR) for overall sepa-
ration performance. In addition, extended short time intelligibil-
ity metric (ESTOI) has been reported, which, unlike STOI [25],
does not assume mutual independence between frequency bands of
speech and interfering signals [24] and is hence a better predictor of
intelligibility for experiments reported in this paper.

3.4. Experimental design

We consider two baselines for the proposed CRNN architecture: 1)
A feedforward deep neural network architecture (FDNN) described
in [12], where previous temporal context of N frames was used
for predicting the output corresponding to current frame. 2) A long
short term memory (LSTM) network which has been used for sound
source separation, e.g, in [11]. The experimental design consists
of two stages: 1) Hyperparameter selection using grid search for
the three types of neural network architectures: FDNN, LSTM, and
CRNN, using validation set of lists L3 and L4 , and 2) Evaluation
of the chosen best versions of each topology selected in step 1 on
a common test set (i.e., lists L7 and L8 here). The hyperparameter
selection was performed using only speaker pair M1F1 in order to
limit the degrees of freedom in the search space, for a reasonable
number of experiments.

Hyperparameter selection for feedforward DNN involved se-
lection of appropriate number of hidden layers {1, 2, 3, 4}, num-
ber of neurons in each hidden layer { 128, 256, 512, 1024, 2048},
and number of previous frames {4, 8, 16, 32} to be used in the
prediction of the current frame. Similarly, for LSTM network, the
hyperparameters consisted of number of hidden layers {1, 2, 3, 4}
and number of neurons in each hidden layer {128, 256, 512, 1024}.
Finally, CRNN hyperparameter search consisted of number of con-
volutional layers {1, 2, 3, 4}, number of LSTM layers { 0, 1,2, 3},
and number of convolutional filters {64, 96, 128, 256}. Frequency
max pooling arrangements { 1 by 2, 1 by 3, 1 by 4 } were exper-
imented with, the first and second dimensions denoting time and
frequency axes, respectively. Here, e.g. a max pooling scheme of (1
by 2), implies that the frequency dimension is reduced by a factor of
2. Note that max pooling is done only in the frequency dimension.
Moreover, for the LSTM and CRNN, we also investigated appropri-
ate sequence length {8, 16, 32, 64, 128, 256 frames}. For CRNN
the following convolutional kernels shapes were investigated , { (3,
3), (5, 5) , (7, 7)}. Here, e.g., (3, 3) denotes kernel size in time and
frequency axes.

The best possible hyperparameters for the three topologies was
selected based on separation performance (i.e., SDR) on the vali-
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Table 2: Performance metrics for the three neural network architectures.

Network topology

Speaker pair Metric FDNN LSTM CRNN

M1 F1

SIR 10.39 10.68 10.99
SAR 10.69 10.69 10.7
SDR 7.23 7.4 7.54

ESTOI 0.76 0.78 0.79

M1 M2

SIR 9.56 9.85 10.22
SAR 9.96 9.98 9.92
SDR 6.42 6.55 6.74

ESTOI 0.76 0.77 0.79

F1 F2

SIR 8.23 8.55 9.16
SAR 9.8 9.53 9.78
SDR 5.49 5.51 6.01

ESTOI 0.70 0.71 0.74

dation data. Table 1 shows the final hyperparameters selected for
final evaluation. A max pooling layer was used after each convo-
lutional layer. A convolutional kernel of size (3, 3) and max pool-
ing scheme of 1 by 2 was used for final evaluation. Interestingly,
in our tests, each of the network architectures giving best perfor-
mance on the validation set had similar order of trainable parame-
ters, with roughly 3.9 M, 5.2 M and 4.1 M parameters across the
FDNN, LSTM and CRNN architectures respectively.

Some choices of network parameters were not included in the
hyperparameter search and were kept constant for all networks.
These choices were empirically determined on the basis of prelim-
inary experiments, observing the performance on validation data.
For feedforward DNNs the sigmoid activation function was used
for both hidden and output neurons and dropout regularization was
[28] of 0.4 is used to counter overfitting; for CRNNs rectified lin-
ear units (ReLU) activation was used for hidden layers and sigmoid
activation for the output layer, with a dropout rate of 0.4. Other de-
sign choices include using batch normalization [29] after each feed-
forward/convolutional layer in FDNN/CRNN. The Adam algorithm
[30] was used to optimize the gradient descent. An early stopping
criterion [31] was used to stop training when no further improve-
ment in validation loss occurred for 25 epochs. The Librosa [32]
library was used in feature extraction and Keras [33] neural network
library was used for training the neural networks.

3.5. Results

The separation and intelligibility performance metrics were com-
puted over 400 mixtures produced from the evaluation set lists L7
and L8, for the three speaker pairs: M1F1, M1M2, and F1F2.

Best performance was achieved on the M1F1 speaker pair most
likely due to the greater difference between between male and fe-
male speakers, whilst F1F2 yielded the lowest separation metrics.
CRNNs performed slightly better than the baseline architectures for
speaker pairs M1F1 and M1M2. For speaker pair F1F2 , CRNNs
perform notably better than the other architectures showing 0.5 dB
improvement over the baseline. Similar improvement in terms of
intelligibility are indicated by ESTOI scores as well, going from
0.70 to 0.74.

For each of the various network topologies, quite different con-
figurations produced optimal results. For the feedforward DNN,

only 8 frames of previous context were used at the input, whereas in
LSTM and CRNN architectures, significantly greater previous tem-
poral context was used in calculation of the output, with sequence
lengths of 64 and 128 frames respectively, yet still all network ar-
chitectures had similar order of parameters to be trained, despite
varying contexts.

4. CONCLUSION AND FUTURE WORK

In this paper, we showed the potential of convolutional recurrent
neural networks (CRNN) for the task of monaural sound source
separation for applications requiring low algorithmic latency. We
compared the proposed neural network architecture to feedforward
DNNs and LSTM networks and show that the proposed method per-
forms slightly better than these networks, whilst using far fewer pa-
rameters to model the same temporal context.

CRNNs thus offer a promising alternative to the baseline archi-
tectures. In this work, only square convolutional kernels were con-
sidered, (as is generally used in image processing domain) but that
might not be optimal for the the task of source separation. Future
work would involve a more thorough investigation of the effects of
possible hyperparameters on the proposed CRNN architecture for
source separation. Additionally, the relationship between training
data quantity and network architecture and parameters is an inter-
esting problem warranting further investigation. The observed ob-
jective improvements achieved through the proposed method should
be further verified through listening experiments.
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