
Rethinking Hearing Aid Fitting by
Learning From Behavioral Patterns

Benjamin Johansen
Tech. University of Denmark
Dept. of Applied Mathematics
and Computer Science
Richard Petersens Pl., bld. 321,
DK-2800 Kgs. Lyngby, Denmark
benjoh@dtu.dk

Per Sandholm
Oticon A/S
Kongebakken 9,
DK-2765 Smørum, Denmark
psan@oticon.com

Michael Kai Petersen
Eriksholm Research Centre
Rørtangvej 20,
DK-3070 Snekkersten, Denmark
mkpe@eriksholm.com

Jakob Eg Larsen
Tech. University of Denmark
Dept. of Applied Mathematics
and Computer Science
Richard Petersens Pl., bld. 324,
DK-2800 Kgs. Lyngby, Denmark
jaeg@dtu.dk

Niels Henrik Pontoppidan
Eriksholm Research Centre
Rørtangvej 20,
DK-3070 Snekkersten, Denmark
npon@eriksholm.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
CHI’17 Extended Abstracts, May 06-11, 2017, Denver, CO, USA ACM
978-1-4503-4656-6/17/05. http://dx.doi.org/10.1145/3027063.3053156

Abstract
The recent introduction of Internet connected hearing in-
struments offers a paradigm shift in hearing instrument fit-
ting. Potentially this makes it possible for devices to adapt
their settings to a changing context, inferred from user in-
teractions. In a pilot study we enabled hearing instrument
users to remotely enhance auditory focus and attenuate
background noise to improve speech intelligibility. N=5, par-
ticipants changed program settings and adjusted volume
on their hearing instruments using their smartphones. We
found that individual behavioral patterns affected the usage
of the devices. A significant difference between program
usage, and weekdays versus weekends, were found. Users
not only changed programs to modify aspects of direction-
ality and noise reduction, but also continuously adjusted
the volume. Rethinking hearing instruments as devices that
adaptively learn behavioral patterns based on user interac-
tion, might provide a degree of personalization that has not
been feasible due to lack of audiological resources.
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Introduction
The current practice of fitting a hearing instrument relies on
a trained audiologist, and it takes on average two months,
with 2-3 visits, to fit the hearing instruments [6]. Hearing
instruments are rarely fitted optimally at the first consulta-
tion, as the amplification of specific frequency bands only
explains part of the problems encountered when aiming to
understand speech in noise. Postponing the first visit for a
decade [3] from first experiencing hearing problems until
acquiring a hearing instrument provides other challenges.
During this period the brain may have started to rewire due
to its inherent plasticity and consequently the ability to com-
prehend speech may have begun to degenerate [7, 9]. As
a result it may be difficult for the wearer to separate voices
in challenging listening environments. In many cases there
may be a lack of audiological resources for optimally ad-
justing the device. A perceived bad user experience may
result in the user giving up on adapting the settings or sim-
ply returning the hearing instrument to the clinic. Kjeldsen
and Matthews [5] identifies two types of tests in the hear-
ing instrument fitting: as a minimum identify the needs for
amplification in the frequency bands affected by the hear-
ing loss based on an audiogram and subsequently assess
the user’s ability to separate sounds in noisy environments
in sessions with trained audiologists. It may be difficult for
users to describe how they perceive sounds in words in or-
der for the audiologist to adjust the settings. Furthermore,
the listening experience is only simulated based on audio
samples in the clinic, which may differ from the problems
the user actually encounters in real life. Other papers within
the HCI literature have addressed the issue of retrieving
and describing a situation. Dahl and Hanssen [2], build a
tabletop prototype, where the user could choose between
predefined soundscapes, but such participatory approaches
may require that an audiologist is present to be useful.

In this paper we investigate how a hearing instrument is
used throughout the day. Meaning, rather than simulating
listening scenarios in a clinic, we aim to infer the optimal
settings based on how the user adjusts programs and/or
volume as the context changes in real life situations. In the
present study we focus on the temporal dimension of inter-
action patterns observed over hours and days within a 10
week period. To our knowledge, no other studies have in-
vestigated in situ temporal interaction patterns of hearing
instrument users at this level of detail. Traditionally hearing
instruments have been perceived as independent devices
limited by memory size and processing power, and only
recently been able to wireless connect with smartphones.
Utilising the power of an Internet connected hearing instru-
ment, we investigate how a snapshot in time, represents
a situation where the hearing instrument performs subop-
timal. In this scope, the hearing instrument is perceived
as a device that augment a soundscape. Previous studies
within HCI have described similar devices augmenting hear-
ing, usually involving a pair of binaural microphones and
a pair of head worn speakers[8] [10], however, they have
not investigated adaptation patterns or user fitted hearing
experiences.

We propose a different way of hearing instrument fitting,
connecting hearing instruments with smartphones and the
Internet, making them cloud connected devices. Based
on data and user engagement, we generate new types
of personalization of hearing instruments. We propose a
paradigm shift where audiological best practice and inter-
ventions includes decisions making from user generated
data reflecting everyday usage.



Method
Participants
6 participants volunteered for the study (6 men), from a
database provided by Eriksholm Research Centre. The me-
dian age was 61.8 years (std. 11.1 years). All participants
have more than a year experience using hearing instru-
ment. The participants suffers from a symmetrical hearing
loss, ranging from mild-moderate to moderate-severe as
described by the WHO[12]. All have an iPhone 4S or newer.
One participant was excluded due to missing data.

Figure 1: The interface of the
Oticon ON iPhone app available
from the App Store (iOS) to control
the hearing instruments. To
increase volume the user swipes
up, and to reduce, swipes down. To
change program the user taps the
black circle and taps on a program
to select it. The app then
communicates directly with the
hearing instruments via Bluetooth,
and data is send via the iOS IFTTT
app.

Apparatus
Each subject were equipped with two Oticon Opn™ hear-
ing instruments, stereo Bluetooth low energy (BLE) 2.4
GHz. All subject used personal iPhone 4S or newer iPhone
models with Bluetooth 4.0. The logged data consist of any
user initiated program change or volume change through
the Oticon ON iPhone app (see Figure 1), formatted as time
series data, transferred using IFTTT (If-This-Then-That),
stored in the cloud and shared via Google Drive. The hear-
ing instruments were fitted with four programmes. The sub-
jects were provided with a test user Google account prior
to the experiment. The account was used for data collec-
tion, and the subjects had full ownership of the account and
data.

Procedure
Subjects were fitted with OPN hearing instruments by an
audiologist. The hearing instruments were fitted based on a
unique frequency dependent volume amplification for each
subject. Each subject was fitted with four programmes,
through the Genie 2.0™ fitting software. The programs
emulates different types of auditory focus, by increasing
amounts of signal processing to enhance voices and re-
duce background noise when encountering challenging
listening scenarios. These are trade offs between speech

intelligibility, and background sound amplification. The four
programs are:

• P1: Resembling an omnidirectional perception with
a frontal focus. Sounds from the sides and behind
the listener are slightly suppressed to resemble the
dampening effect of the pinna.

• P2: similar to P1 but gently increasing balance and
noise removal when encountering complex listening
environments.

• P3: similar to P1 but increasing balance and noise
removal even in simple listening environments.

• P4: similar to P3 with high sensitivity to noise in-
creasing balance and noise removal in all listening
environments.

Results and Discussion
In this section we first analyse the collected data to explore
what differentiates the program usage based on the time of
the day. Next we probe whether demands related to specific
activities influence the behavioral patterns, by comparing
program usage on weekdays (Mon-Fri) against weekends
(Sat-Sun). Subsequently we discuss to what degree such
learned behavioral patterns could sufficiently provide a
foundation for adapting the device settings based on tem-
poral aspects alone. For the analysis, only data collected
between 8AM and 12AM is used, under the assumption
that the hearing instruments would be switched off during
the night. Data was collected between 12AM and 8AM, as
the participants not always switched off the hearing instru-
ments, introducing noise in the data set.

The difference between programs
Each subject shows unique interaction patterns when it
comes to program usage. It should first of all be noted that
the usage time for each participant varies between 3.5 to 8



hours per day. The total usage can be observed in Table 1.
To determine if there is a significant difference between the
usage of the four programs an analysis of variance was per-
formed. The mean usage of the four programs are: P1 18.4
minutes per hour (mph), P2 1.5 mph, P3 0.6 mph and P4
4.1 mph. Meaning, the difference in usage time related to
the four programs was significant (F(3,4) = 23.1, p < .0001).

Average daily usage

S1 3.54 h
S2 7.21 h
S3 7.41 h
S4 6.66 h
S5 8.08 h

Table 1: Average hours of usage of
the hearing instrument for each
subject (S1-S5).

P1 P2 P3 P4

S1 65% 17% 3% 15%
S2 80% 0% 0% 20%
S3 96% 0% 0% 4%
S4 67% 9% 10% 15%
S5 62% 9% 1% 28%

Table 2: Average usage of hearing
instrument per subject. P1-P4 are
programs, and S1-S5 are subjects.
The average usage is in
percentage of total usage of the
device from 8AM to 12PM.

The subjects have a preference for using P1, while P4 is
second. The preference for P1, may reflect that it provides
a frontal focus with a slight dampening of sounds from the
back. This is similar to the acoustical characteristics pro-
vided by the natural shape of the ears and head. This sug-
gest that P1 may provide adequate compensation in most
of the listening scenarios encountered during the day. The
three other programs offer increasing degrees of frontal fo-
cus and noise removal, where on average program P4 is
preferred. However, from Table 2, subject 1 seems to pre-
fer P2 which offers increased brightness facilitating speech
intelligibility to P4. Based on the program changes alone
it seems that at least two different auditory focus settings
are needed. One program for less demanding listening sce-
narios allowing the user to shift the attention between sev-
eral sound sources, and another program for challenging
environments with multiple voices and background noise
requiring more attenuation of ambient sounds.
Table 2 shows the average usage of the four programs, P1-
P4. Interestingly, we found that program P1 was preferred
74% of the time. This is significantly different from previous
findings of respectively 33% [1] and 37% [11]. This could
be due to manufacturer-specific noise reduction and gain
reduction algorithms[4]. An interesting observation along
the temporal dimension is illustrated in Figure 2. As an il-
lustrative example, subject 4 uses P1 over the course of the
day. However, the more supportive program P4 is primar-
ily used between 11AM and 4PM and again between 7PM
and 10PM. In Figure 2c patterns for the same two programs

are shown for Subject 2. A notable difference appears for
the usage of P4, who uses P4 from 9Am to 5PM, and then
barely uses this program for the rest of the time period. The
patterns thus seem highly individual and any design of al-
gorithms for automatically adapting device settings would
need to incorporate temporal aspects in regards to the indi-
vidual preferences.

The different usage in weekdays compared to weekends
The next question to investigate is whether specific activi-
ties in weekdays and weekends change the behavioral pat-
tern. The average use on weekdays are 7.8 hours per day,
and 5.4 hours per day for the weekends. The difference be-
tween the aforementioned is significant (F1, 4 = 17.0, p <
.02). To understand how the usage patterns varies between
the weekdays and the weekend, a statistical analysis was
performed on the four programs across participants. The
different usage of the four programs was significant (F3,12 =
23.1, p < .0001). However, the interaction between program
and day was not significant (F3,12 = 1.4, p > .5).
This indicates that the behavioral patterns vary over the
course of a week. From Monday through Friday P1 is on
average used 71% (of 7.8 hours) versus 80% (of 5.4 hours)
Saturday to Sunday. Both the overall usage time and re-
duced selection of the P2-P4 programs, indicate that the
user activities during weekends may represent fewer au-
ditory challenges. In the light of this, we argue that any al-
gorithms aiming to adapt the device settings according to
behavioral patterns should also take these weekly patterns
into consideration.
Using Subject 2 and 4 as contrasting examples in Figure
2d and 2h notice how the P4 usage pattern changes be-
tween weekdays and weekends. Subject 2 uses P4 more
throughout the day (Mon - Fri), and only uses the program
sparingly during evenings in the weekend. Subject 4 prefers
P4 primarily during afternoons in the weekends, whereas



(a) Mon-Fri for subject 1 (b) Sat-Sun for subject 1

(c) Mon-Fri for subject 2 (d) Sat-Sun for subject 2

(e) Mon-Fri for subject 3 (f) Sat-Sun for subject 3

(g) Mon-Fri for subject 4 (h) Sat-Sun for subject 4

(i) Mon-Fri for subject 5 (j) Sat-Sun for subject 5
Figure 2: Program usage over time, from 8AM to 12AM. P1 is
beige, P2 is brown, P3 is light blue and P4 is dark blue. The left
hand columns represents usage over weekdays, and the right
ones represents usages in weekends.

this usage patterns is not found during weekdays.

Volume and program interactions
An additional parameter to investigate when modeling the
behavioral patterns are the volume change interactions.
The volume interaction can be interpreted as a fine tuning
of the desired auditory scene, by increasing or decreasing
the intensity, thus zooming in or out of an auditory scene. In
Figure 3 a comparison of the 5 test subjects and their us-
age of volume with respect to program can be observed.
The light to dark blue colors reflect decreasing volume,
while the yellow to orange gradients reflect an increase in
gain. It can be observed that most subjects decrease the
volume in P1 during the weekend. Subject 4 prefers to pri-
marily reduce the volume, in contrast with Subject 5 which
prefers to mostly increase the volume. In these cases we
hypothesize that the gain settings of the devices might need
to be adjusted. Subject 1 adjusts the volume both up and
down from Monday through Friday, whereas the volume is
only decreased during weekends.

While the above user interaction over a 10 week period can
be inferred directly from the program change and volume
adjustment, we subsequently in follow-up audiological ses-
sions with the subjects found that the behavioral patterns
were aligned with the aggregated program usage history
data continuously collected over 4 months by the devices.
Subsequently we interviewed the test subjects to determine
what defined their program and volume preferences. The
P1 program was preferred in most listening scenarios be-
cause it allows the users to selectively shift their attention
omnidirectionally to any sound sources. However, when en-
countering more challenging acoustical environments, the
three alternative program settings were selected, whether
the aim was to enhance speech intelligibility, attenuate am-
bient sounds or remove background noise. Additionally



(a) Mon-Fri for subject 1 (b) Sat-Sun for subject 1

(c) Mon-Fri for subject 2 (d) Sat-Sun for subject 2

(e) Mon-Fri for subject 3 (f) Sat-Sun for subject 3

(g) Mon-Fri for subject 4 (h) Sat-Sun for subject 4

(i) Mon-Fri for subject 5 (j) Sat-Sun for subject 5

Figure 3: Program usage with respect to volume gain, from 8AM
to 12AM. For each column the left figure is P1 and right figure is
P4. Left hand columns represents usage over weekdays, and the
right are usages in weekends.

users increased or reduced the perceived loudness of these
settings by continuously adjusting the volume.

Perspectives
These results indicate that the users predominantly pre-
ferred to combine volume adjustments with settings provid-
ing an open frontal focus coupled with a natural attenuation
of ambient sounds in 74% of the usage time. This differ
from earlier studies reporting that an omnidirectional fo-
cus was only chosen in respectively 37% [11] and 33% [1]
of listening scenarios. In contrast to earlier studies using
simulated sound environments [2] our findings are based
on the actual acoustic environments encountered by users
over several weeks of usage. It is difficult to compare these
studies, as the data generated in our study represent snap-
shots of user intents triggered by the changing auditory
context throughout daily life. When compared to earlier
studies, the quality of sound enabled by recent advances
in digital signal processing provided by the state of the art
devices used here is also likely altering how the auditory
focus is perceived subjectively. The method of continuous
data collection may facilitate long term personalization of
auditory interfaces not limited to hearing instruments but
encompassing next generation hearables in a wider sense.
We propose that our data driven approach could potentially
be used to individualize settings based on continuous in-
teraction with Internet of things connected devices. In turn
providing a dynamically optimized personalization, inferred
from learned behavioral patterns.
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