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Abstract—The unscented Kalman filter (UKF) is a very popular
solution for estimation of the state in nonlinear systems. Similar
to the extended Kalman filter (EKF) and contrary to the Kalman
filter (KF) for linear systems, the UKF provides no guarantees
that the filter updates will improve the filtered state estimate.
In the past, the iterated EKF (IEKF) has been suggested as a
way to online monitor the filter performance and try to improve
it using optimization techniques. In this paper we do the same
for the UKEF, deriving six iterated UKF (IUKF) variations based
on two cost functions and three optimization algorithms. The
methods are evaluated and compared to IEKF versions and to
two versions of the iterative posterior linearization filter (IPLF) in
three benchmark simulation studies. The results show that IUKF
algorithms can be used as a derivative free alternative to IEKF,
and provide insights about the different design choices available
in IUKF algorithms.

I. INTRODUCTION

Since the 1990’s the unscented Kalman filter (UKF, [1-
4]) has become a very popular and derivative-free alternative
to the extended Kalman filter (EKF, [5]) for nonlinear state-
space problems. While the EKF works by linearizing the state-
space model to be able to apply the Kalman filter (KF, [6, 7]),
the UKF uses the unscented transform (UT) to estimate the
distributions needed to apply the KF.

A central concept, often lacking in the text book presen-
tations of the EKEF, is online performance analysis of the
measurement update step to ensure that the update in fact
reduces the associated cost function. The cost function can
both be used to adapt the step length of the update and
to guide an iterative search to minimize the cost and hence
to ensure that it is improved in each measurement update.
Since the EKF measurement update is essentially a Gauss-
Newton (GN) method [8] without iterations, efficient iterative
optimization routines can be applied to the involved cost
function as demonstrated in [9]. This class of filters can
be referred to as iterated extended Kalman filters (IEKFs).
In IEKF, the measurement Jacobian is re-linearized at the
current estimate and Kalman-like updates are performed until
convergence [8, 10, 11]. There are many other methods
correcting for the linearization errors in the standard EKF; [12]
includes higher-order moments; and [4] suggests second order
derivative compensation. However, the key with IEKFs is not
directly to compensate for linearization errors but rather to
search for better linearization points using iterative search
making it suitable for strong nonlinearities. Thus, IEKF is a

natural extension of EKF as a nonlinear least-squares (NLS)
solution using GN and as such, iterations are typically required
for convergence to a local optimum. The IEKFs can result in a
lower root mean square error (RMSE) and faster response to
transients [13] than the EKF in cases when the signal-to-noise
ratio (SNR) is high.

Given the beneficial properties of performing iterative up-
dates in the EKF, a reasonable assumption is that the same
applies for the UKF since the update equations are the same.
Previous work on iterated UKF (IUKF) include [14] that
develops an iterated sigma point filter in the context of long
range stereo camera measurements. The presentation assumes
a frequentist’s or Fisherian point of view of estimation. That
is, the objective is to obtain the best possible estimate of the
unknown parameter, while minimizing in this case the squared
error or variance. Other papers having a similar approach,
but not based on GN, are e.g., [15, 16] which update the
covariance estimate in each iteration, guides the search mini-
mizing the residual and uses a damping parameter, rather than
a standard step-size parameter, to avoid divergence. Contrary
to this, resorting to a Bayesian view point, a recent method
based on statistical linear regression using sigma points KF
was proposed [17, 18], where the objective is to derive an
accurate distribution of a stochastic variable. Based on this, a
Bayesian minimum mean square estimator (MMSE), denoted
iterative posterior linearization filter (IPLF), is dervied. It
can be seen as an iterative procedure minimizing a Kullback-
Leibler divergence (KLD) to obtain the best posterior distri-
bution approximation. A difference to the IEKFs is that the
covariance approximation is iteratively updated and used in
the update equations whereas the IEKFs only need to compute
the covariance when the GN search has terminated. A further
development is the damped version of IPLF [19] which applies
GN optimisation to the mean estimate in a inner loop in the
same fashion as damped IEKFs.

This paper extends on the work in [9, 14] and develops
a number of iterative UKF filters based on different ways to
optimize the underlying cost function. The algorithms are also
compared to the standard IPLF [18] and a slight modification
of IPLF using the state predicted measurements instead of the
the sample mean. The paper is organized the following way.
In Sec. II a short background to the EKF, UKF, and IEKF is
given, providing a framework common to all the filters. Sec. III
derives two alternative generic [IUKF formulations, which are



Algorithm 1 Kalman Filter

Algorithm 2 Iterated extended Kalman measurement update

Assume Zg|g and Fy|g given.
for all t do
Time update:

i”t\t—l = Fi%t—1|t—1 (22)
Pyy—1 = FP_1y 1 F" + GQ,G" (2b)
Measurement update:
By = Ty + Ke(ye — 1) (3a)

Py = (I — KyH)Pyy_(I - K.H)" + KR, K[ (3b)

Gt = HIyy (30)
th‘;y,l = Pt|t71HT (3d)
Pﬁf_l = (HPt|t71HT+Rt)_1 (3e)

Ky =Py (PR (30)

end for

then further elaborated on in terms of different optimization
algorithms. The derived IUKEF filters are then evaluated using
three benchmark examples in Sec. IV. Concluding remarks are
given in Sec. V.

II. FILTERING PRELIMINARIES

Consider the problem to estimate the state in the following
state-space model:

(1a)
(1b)

Tt = f(-rt—hwt—l)
yr = h(xy) + ey,

where x; is the state at time £, y; a measurement, and
wy and e; mutually independent and Gaussian white noise;
f and h describe the state propagation and measurement
function, respectively. It is assumed that cov(w;) = @ and
cov(e;) = R;. Depending on the structure of the model,
different solutions exist.

A. Kalman Filter

The famous Kalman filter is the best linear unbiased esti-
mator (BLUE) when the model (1) is linear, i.e., f(z,w;) =
Fz; + Gwy and h(z;) = Hx; and, furthermore, efficient if
the noise is Gaussian. The KF is given in Algorithm 1, where
Joseph’s form is used for the covariance measurement update
due to its better numerical properties and that it does not
assume the filter gain is optimal. Given its favorable properties,
the KF is often used as basis in algorithms to solve nonlinear
problems.

B. Iterated Extended Kalman Filter

The KF is not directly applicable to nonlinear systems,
however, the EKF provides a solution based on linearizing the
model. The algorithm is identical to Algorithm 1 with F' =
fo(@t-1)t-1,0), G = fi,(£4-1)¢-1,0), and H = h/z(ftn—ﬁ
with the exceptions that

i’t\tfl = f(itfl\tflv()% Ut = h(i‘t|t71)- “4)

The following measurement update is used instead of the
measurement update in Algorithm 1.
Measurement update: (Let xo = & = Zyy—1, P = Pyy_1,
R= Rt, and Yy = yt)
for :=0,... do

Tip1 =&+ Ki(y — h(z;) — Hi(2 — 2;)) (52)
Ki= PP~ Hi=H(w) (5b)
P = pHT P =H,PH +R  (5c)
end for
Output estimates:
Ty = Tiy1, (6a)
Py = (I - K;H;)P(I - K;H;)" + K;RK]  (6b)

In this case optimality, or even convergence, can no longer
be guaranteed, and different improvements have been sug-
gested. One alternative is to introduce an iterative mea-
surement update step [5, 9, 20]. This can be motivated by
the fact that the measurement update is a Gauss-Newton
method, [11, 21], which in general relies on iterations. A
generic measurement update step in the resulting iferated
extended Kalman filter (IEKF) is given in Algorithm 2 [9].

C. Unscented Kalman Filter

Another alternative is to use the unscented transform (UT)
to obtain the necessary quantities in Algorithm 1. This yields
the unscented Kalman filter.

The UT approximates the distribution of a stochastic vari-
able x after the mapping y = f(z), assuming & = E(x) and
P = P* = cov(z), using carefully selected and weighted
samples, denoted sigma points. Usually the sigma points are
selected according to

x0 =z

XER) —a g [\/mh, k=1,...,L,

where n, is the number of states and X\ = a?(n, + K) — Ny,
with the UT tuning parameters «, (3, and «. The [A].;, notation
denotes selection of the k™ column of A, which are assigned
the weights

(7a)
(7b)

_
2(ng + A)’

The distribution of y is now approximated using weighted
sample means,

wo — A R

e + A (7e)

Yk — f()((’f)) (8a)
§= Z W(k)y(k) (8b)
k
P =% W Q® —g® — gy + R
k
+ 1=+ YO =9 —pT (8o



TABLE I
PARAMETER SETTINGS FOR SOME DIFFERENT UKF VERSIONS.
Parameter  UT1 [22] UT2 [3] CT 23] DFT [24]
a V/3/na 10~3 1 —

B 3/ng —1 2 0 —

K 0 0 0 —

A 3—ng 107 %ng —ng 0 0
N + A V3 1073 /na iz Lnz

w©) 1—n4/3 1—10° 0 0

Algorithm 3 Unscented Kalman Filter

Assume Zgjg and Fyjo given.
for all t do

Time update: Apply the UT to (la), assuming the mean
Z¢_1|¢—1 and covariance P;_1};_1 for z;_1, to obtain Z;;_;
and Py;_q.

Measurement update: Apply the UT to (1b), assuming
the mean ;;_; and covariance Py;_; for zy, to obtain g,

Pg?—y and P;E_l.
Perform the regular KF update.
end for
Py — W(k)(X(k) _ j)(y(k) -7t

k
+(1-a®+R)XP -V -9 @
where W.? = W©® 4 (1 — a2+ ) is often used as shorthand
in the covariance expressions. The additional term in the
covariance expressions try to ensure a positive definite result.
Several different schemes for selecting the parameters «, f3,
and k exist, see, e.g., Table I and [4].

The time update step of the UKF is a direct application of
the UT to (1a). For the measurement update, direct application
of the UT to (1b) is used to obtain 4, Ptl\/iv and P;‘Eiyfl. The
UKF algorithm is summarized in Algorithm 3.

The method suffers from many of the same problems as
the EKF do, and the remainder of this paper is dedicated to
deriving and evaluating different iterated UKF filters.

IITI. ITERATED UNSCENTED KALMAN FILTER

Deriving an IUKF within the Fisher estimation framework,
similar to the IEKF presented in [9], amounts to minimizing
the following cost function in the measurement update step of
the filter:

&y, = argmin V(z) = arg min 27" (2)r(z)

where

r(z) = 9)

2/ A
Pt\t_l (xt|t71 - T)

R, (g, — h<x>)] .

Depending on the optimization method used and the inter-
pretation of the cost function V' (z), different filters will be
derived.

A. Basic Iterated Unscented Kalman Filter

First a UKF version of Algorithm 2 is derived. As the
IEKF version, it assumes that the measurement function is
affine in a neighborhood of x and z; and hence that b/ (z) =
hl.(z;) = H;. The Jacobian H; is not explicitly computed in
the UKEF, but a stochastic linearization can be derived from the
fact that P*Y = PH7 in the linear case. Hence, a reasonable
approximation of H; in the IUKF is

H; = (PP~ (10)

where symmetry in P has been utilized. As also suggested
in [8], P is assumed constant during the iterations and hence
the spread sigma points are constant as in [14]. This is different
than the approach in [15, 16] where the covariance is updated
in each iteration. Note, however, that as P and P™Y implicitly
include second order transformation effects [4], the expression
is only an approximation of the Jacobian for nonlinear models.
Using the above stochastic linearization argument, the state

iteration in IEKF (5a) can be used to obtain
Tip1 =&+ Ki(y— g — (P/)T P71 (& — a))
=&+ Ki(y — §i — Hi(@ — 7)), (1

where

K, = P™(P/) ", (12)

which can be used as basis in the IUKF. Note that = &;;_;
is kept constant throughout the iterations (5). That is, the exact
same procedure as in the IEKF (Algorithm 2) can be used
in the IUKF by deriving P¥ and P/Y from the UT instead
of a linearization as in the IEKF. It remains to determine
the predicted measurement ;. There are two different natural
choices:

g =Y WP, (13a)
k
i.e., as the UT prediction of the measurement, or as
=y, (13b)

i.e., the transformed center sigma point which is here denoted
by superscript *. The two choices result in two slightly
different interpretations of the cost function

V(e) = (g — Elh(x)]) Ry (ye — Elh(z)])

+ (@1 — @) Pl (Egen —2)  (140)
V(@) = (3 — h(@))" Ry (= (@)
+ (@1 — @) P (Eyge1 — ), (14b)

both constituting different approximations of the cost function
in (9).

Two things are worth noticing at this point.

e The former expression defines the cost in terms of the
expected value of the measurement, not the measurement
given by the current state estimate as the latter expression
does. Hence, the latter gives a more direct connection to
the current state.



Algorithm 4 Iterated Unscented Kalman Measurement Update

The following measurement update is used instead of the
measurement update in Algorithm 3.

Measurement update: (Let xg = Ty_1, T = Tyjp—1, B =

Rt, and Yy = yt)
for i = 0,... do until convergence
i1 =2+ Ki(y— 9 — (PP Y2 — ), (15)
with
K; =P (P, (16)

where as in the UKF, P/Y and P,V are all derived using
the UT using new sigma points around the current estimate.
; is either the predicted measurement from the UT or the
y§°> sigma point.

end for

Output estimates:

(17a)

(17b)

Ty)p = Tig1,
Py, = (I - K;H;)P(I - K;H;)" + K,RK].

o For the EKF the two expressions are identical due to
the underlying approximation. At first, it is not obvious
which solution would be the best; therefore, both will be
considered when evaluating the IUKF.

The measurement update in the generic I[UKF is summarized
in Algorithm 4.

B. Iterative Posterior Linearization Filter IPLF

The IPLF has similar update equations as the GN based
IEKF/IUKF but it differs in three ways:

o IPLF approximates the measurement by moment match-
ing using statistical linear regression.

o It introduces an extra matrix §2;, corresponding to the
estimation error covariance as a result of the linearization
of h(zx).

o The iterated covariance P, is used to compute the Kalman
gain. This is also done in the Levenberg-Marquardt
versions of IEKF/IUKF but only to compute the search
directions, and the final covariance estimates are here
computed using (17b).

The IPLF derived in [17, 18] results in the following update
equations, here stated in the notation used for the IUKF in
this paper

Tiv1 =&+ Ki(y — 9 — Hi(2 — 24)), (18a)
P,.1 =P — K;H;P, (18b)
K; = PHY (H;PH +Q;+ R)™", (18¢c)
Q, =P — H;P,Hl — R, (18d)

where §;, H; and P}¥ are computed using the current state
iterate x; and the UT with sigma points chosen using the
iterated covariance P; in (7b). As with the IUKF the predicted
iterative measurement in the IPLF update can be chosen using
(13a) (as used in [17, 18]) or (13b).

C. IUKF with Line Search

With a cost function at hand it is sensible to check whether
the state correction results in a cost decrease in the first place,
that is, V(a;41) < V(a;). If this is not the case a step size
parameter « can be introduced

Tin = i+ @B - 2+ Ki(y = g0~ Hil@ - @) (19)

The step size can be calculated using line search, e.g., by
checking for cost decrease, see [25] for detailed options. For
GN, «; = 1, should be tried first. A line search can be added to
both the IEKF and IUKF, and following our earlier convention
the TUKF with lines search will be referred to as TUKF-
L, in accordance with IEKF-L which was introduced in [9].
When the iterations have finished the state and covariance are
updated using (17).

It is also straightforward to introduce a step size parameter
to the IPLF (18a) by comparing it to (5a) but there is no
obvious criterion to minimize. One option is given in [19],
where (18a) is used as an inner GN search with the covariance
fixed, in which the cost function V' (z) (14a) is used.

D. Quasi-Newton IUKF

Needing only to compute first order derivatives, as com-
pared to Newton’s method, makes the Gauss-Newton method
an attractive option. However, second order terms may be of
great importance for finding a good search direction when the
starting point is far from the optimum or when the Jacobian
is rank-deficient. As in [9], a model of the second order terms
matrix, T;, can be added to the IUKF update as

Tip1 =4+ Kl (y — 9 — Hi%;) — SIT; i, (20a)
S = (HF'R'H;+ P~ +T;)7 1, (20b)
K] =SIHI R, (20¢)

where ¥; = & — x; has been introduced. Adding a step size
parameter to (20) results in

Tiy1 = T; + 0y (i‘l + Klq(y — Ui — Hii‘i) — SgTii‘i), 21
which we shall refer to as Quasi-Newton-IUKF (QN-IUKF).
The updated covariance is again computed using (17b).

The matrix 7; can be computed numerically at run-time,

see, e.g., [26] or [27, Eq. (10.143)], using the scheme in
Algorithm 5.

E. Levenberg-Marquardt IUKF

The third IUKF is based on the trust-region method called
Levenberg-Marquard (LM), after its inventors [28, 29]. In LM
a single parameter, y, is used to control the search strategy by

interpolating between steepest-descent and GN. The iterations
for the Levenberg-Marquardt-IUKF (LM-IUKF) are

ziy1 = &+ Ki(y—9i— Hii;)—pi(I - K;H;) PB;#;, (23a)

P=(I-P(P+p;'B;") )P, (23b)
K;=PHI'(H;P,H + R)™}, (23¢)
B; = diag(HI R™'H; + P71, (23d)



Algorithm 5 Hessian Model Calculation
Require: H;, H;_1,¥;,y;—1 using UT and initialize T, = 0.

for : = 1,... do until convergence of (21)

vi=—H{ Ry =) + HL1R™'(y — §i1),

zi = (Hioy — H)"R™'(y — 9i), (22a)
8; = Tj — Ti—1, (22b)
. |sT 2|

i = 1, , 22
T, m1n< 5T Tysi] (22¢)
T 1 =71, (224d)
w; = 2z; — T;_1584, (22¢)

T T T
wiv; + v;w; w; 8 T

T;=Ti 1+ - Vi, (22

' vl's; W2 220
end for

as shown in [9], where again ¢; and H; are computed using
UT. As with IUKF-L and QN-IUKF the final covariance is
computed using (17b). Note that (23b) is used in the sigma
point transformation (7b) similar to the IPLF update (18). The
damping factor p is, in our examples, initially set to 0.01
and then multiplied by 10 if no cost decrease is obtained and
divided by 10 until no further cost decrease can be found.

IV. RESULTS

In this section all iterative and non-iterative EKF and UKF
versions are studied using three examples with simulated data.
The TUKFs/IPLF with measurement predictions using (13b)
and cost function (14b) are denoted with superscript * and
the other IUKFs/IPLF use the standard UT prediction (13a)
and the cost function (14a). All results are obtained using
sigma points computed using UT2 with the standard setting,
see Table 1.

A. Bearings Only Tracking

A bearings only example with a stationary target is evalu-
ated. This example was also studied in [9, 30, 31] and we
will therefore only briefly describe the model. The target
with 2D state # = [X,Y]? is stationary at the true position
x* = [1.5,1.5]T. The bearing measurement function from the
j-th sensor S7 at time ¢ is

yg = h](‘rt) —+ e = aI‘CtaHQ(Yt — Si‘,xt - S;) + Ct, (24)

where arctan2() is the two argument arctangent function,
Sy and Sx denotes the Y and the X coordinates of the
sensors, respectively. With the two sensors having positions
St =0,0]" and S? = [1.5,0]%. The filters are initialised with
Zojo = [0.5,0.1]7, Pyjg = 0.1/ and R = 7210751,. After 10
iterations IPLF and IPLF* (i.e., using (13b)) has converged to
an error of 11.7 and 11.8, respectively. All GN based iterative
filters have converged to an error of 0.02 while both the EKF
and the UKF have an error of 3.19. Also the covariances for
all GN iterated filters cover the true state at 20, while the UKF,
the EKF and the IPLFs’ covariances are too small which is

also indicated in Table II by comparing the square root of the
trace of covariance matrix, \/tr(P), to the error. Hence, for
this application all the GN iterated methods work well.

B. Simple Quadratic

A simple quadratic measurement function is

h(z) = —2? (25)

with € R for which the UKF is known to produce strange
results [4], while the IEKF handles this well [9]. It is therefore
interesting to further analyze why the UKF has difficulties
to produce small estimation errors and whether this could be
resolved using any of the IUKF versions.

Here, 1000 measurements are generated, distributed accord-
ing to y ~ N (h(z*), R), with R = 1073, and the true state is
distributed z* ~ N (1, 10’1). The filters are initialized with
xo = 0.1, Pyjo = 1 and 10 iterations are used in all iterative
filters. In Fig. 1 the distribution of the estimation errors from
all filters are shown. It can be seen that the IEKF and IUKF*
(using (14b)) filters yield slightly better RMSEs than the EKF
and UKF, while all the IUKF (using (14a)) filters all have a
few large errors. The exception is the QN-based ones that all
have large estimation errors and do not seem to move from
the initial point. The IPLF have a few large errors but most
of them are small while the IPLF* is almost on par with the
best IEKFs. Using a smaller spread of the sigma points, as in
[18], then IPLF and IUKF-L* performs marginally better.

To understand why the IUKFs using the loss function (14a)
work considerably worse than the ones using (14b), lets study
the special case with a noise-free measurement y = —1 and
the prediction # = 0.1 and P = 1. Here, —h(x) ~ x3(.1?)!
and hence E[h(z)] = 1.01, and y — E[h(z)] = 0.01. The
result is that the error due to the measurement is minor,
whereas y — h(z) = —0.99 in the second case. Here, it would
seem it is not favorable to use the expected measurement
instead of the transformed estimate only. This explains the
difference observed, but provides no definitive answer to what
is generally the best thing to use.

C. Convex Search

A difficult, but convex, nonlinearity is given by the two
dimensional problem

h(z) = X+3Y=01 4 X=3Y=0.1 4 X-0.1 (26)
with z = [X,Y]T € R? which is used in many examples
in [32]. All filters are initialized with = = [-0.9, 0.8]T
and initial covariance Py = 0.1-I, while the true state is
located in 2* = [-0.5, 0]7. Ten iterations are used in all
iterative filters and R = 1072, while the measurement is
ideal. The covariance estimate for UKF and the IPLFs resulted
in a negative eigenvalue and hence there is no covariance to
show for these two in Fig. 2. The EKF fails completely as the
covariance approximation does not capture the true state. The
IUKFs does not improve the estimation error as much as the

X2 () is the non-central chi-2 distribution of degree n and with offset .



TABLE I
FINAL ESTIMATION ERROR FOR THE BEARINGS ONLY EXAMPLE.

Method UKF EKF IUKF- LM- QN- IUKF- LM- OQN- [IEKF- LM- QN- IPLF IPLF*
L IUKF IUKF L* IUKF* IUKF* L IEKF IEKF
lz—z*| 3.19 3.19  0.02 0.02 0.02 0.02 0.02 002 002 0.02 002 11.70 11.77
tr(P) 0.03 0.03 0.03 0.03 0.03 0.03 044 003 003 0.03 0.03 0.30  0.30
x UKF, RMSE=0.8791 EKF, RMSE=4.3401
o T T 100 T T T oF T T
40
50 20F 4
20
o . . . o . . OMMMMMJ.L.‘
0 2 4 . 6 8 10 0 2 Al 6 8 10 0 2 4 e — 8l 6 8 10
IUKF-L, RMSE=0.76306 LM-IUKF, RMSE=0.77635 QN-IUKF, RMSE=0.94336
200 T T 100 T T 100 T T
100 1 50 s0f
o . . . o . . o . . . .
0 2 4 o sl 6 8 10 0 2 4l 8 10 0 2 4 e — 8l 6 8 10
00 IUKF-L', RMSE=0.24733 LM-IUKF’, RMSE=0.35728 QN-IUKF’, RMSE=0.89579
400 60
200
40
200
100 20
. . . . . Ll . . , . . . .
0 2 4 o sl 6 8 10 0 2 4 Al 6 8 10 0 2 4 e - 8l 6 8 10
IEKF-L, RMSE=0.014746 LM-IEKF, RMSE=0.014746 QN-IEKF, RMSE=0.89579
100 T T 1000 T T T T
60
500 4 500 4or
20f
o . o . o . . . .
0 2 4 , Bl 6 8 10 0 2 Al 6 8 10 0 2 4 e -l 6 8 10
IPLF, RMSE=0.45639 IPLF*, RMSE=0.024479
400 T T 1000 T T
200 500
oJ s - 0
0 2 4 6 8 10 0 2 4 6 8 10

2t — | J|la* — ]

Fig. 1. Distribution of the estimation errors on the measurement function (25). The first row shows the distribution of the true state, the UKF and the EKF
estimation errors. The second row shows the IUKFs (using (14a)). The third row show the IUKF* (using (14b)). The forth row shows the IEKFs. The last

row shows the IPLFs.

IUKF*s, again suggesting that it may be better to use (13b)
when there are strong nonlinearities. The IEKFs all produce
small estimation errors with trustworthy covariance estimates.
The IPLF* does improve a little over the starting point while
the IPLF fails completely.

In a second evaluation of (26), 1000 starting points are
distributed zo ~ A (2*,107'1;) with z* = [-0.5, 0]” and
the measurements are distributed y ~ N ((h(z*),1072). The
filters are initialized with zo = [—0.9, 0.8]7 and covariance
Py = 0.1-15 in all 1000 estimates. In all iterative filters 10
iterations were used. In Fig. 3 the distribution of the absolute
values of the estimation errors are shown. As expected, given
the results from the first evaluation of this function, the
IEKFs yields small estimation errors. Both the UKF, IUKF-
L TUKF-L* and IEKF-L clearly result in some really bad
estimates. Notably all QN and LM-based filters have rather
small estimation errors with a few exceptions in LM-IUKF
and LM-IUKF*. Again the IPLF* has smaller RMSE than the
IPLF.

V. CONCLUSIONS

In this paper six versions of iterated unscented Kalman
filters have been presented and compared with three iterated
extended Kalman filters, the recent IPFL, and the non-iterated
UKEF and EKF. The filters have been evaluated using simula-
tions in three benchmark examples. Three methods were used
to compute the measurement prediction corresponding to two
different cost functions. The first cost function uses the UT
and the other uses only the UT center point as in the EKF,
and an interpretation is given to the difference between the
two.

For mild nonlinearities, as in the bearings only example
Sec. IV-A, all iterated IUKFs and IEKFs seem to give nearly
identical results while the IPLFs’ covariances are inconsistent
with too small covariances. The UKF can give poor results
on quadratic functions as noted in [4]. A quadratic function is
studied in the second example in Sec. IV-B highlighting why
the IUKF*s can here yield smaller estimation errors which also
seem to apply to the IPLF*. The last example is a difficult,



Fig. 2. The difficult, but convex, measurement function (26) is evaluated using 10 iterations. All IEKFs have small estimation errors while the EKF have a
large error and a poor covariance estimate. The best performing the QN and LM-based IUKFs are on par with the IEKFs while IUKF-L and IUKF-L* are
not that good. The IPLFs covariances (not shown) are degenerate since they have a negative eigenvalue.

Starting Points . UKF, RMSE=1.6845 . EKF, RMSE=1.1481
- 40 60 1
- 40 1
20 1

J 20 L

. . 0 | 0 . . .

3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Nl =l il o~

IUKF-L, RMSE=7.7039 LM-IUKF, RMSE=0.282 QN-IUKF, RMSE=0.08579

100 T

400

S0 1 200 1
200

3 4 5

1 2 3 4 5
|

QN-IUKF , RMSE=0.21943

o
R

5

o g

>

2

o g

© p—]

o
~
o
o

llz* | lla* ]

IUKF-L', RMSE=0.58737 . LM-IUKF , RMSE=0.43667

150 T

100 1 200

100 1
100

1 2 3 4 5
] lle 3 la* — 2]

|IEKF-L, RMSE=0.25898 LM-IEKF, RMSE=0.25595 QN-IEKF, RMSE=0.21943

@
o S
=
N
S
o S
@
S
o 3
OF“

)
2
)
IS
o

300

200F . T 300§ T T
200 1 200 1
100 1
100 1 100 1
o . . . . o . . . . o . . . .
0 1 4 5 0 1 3 4 5 0 1 2 3 4 5
lla* = 21 Jla* ~ 2 lo* — |
. IPLF, RMSE=2.9009 . IPLF*, RMSE=2.1268
40
40 4
20
20
0 | 0 I P "
0 1 3 4 5 0 1 2 3 4 5
Jla* ~ 2

Fig. 3. Distribution of the absolute values of the estimation errors using the measurement function (26). The upper left plot shows the distribution of the
absolute values of the starting coordinates. The second row shows that the IUKFs sometimes can have some rather poor estimates. The third row shows the
IUKF*. The forth row shows the IEKFs and the fifth show the IPLFs.



but convex, nonlinearity for which line search based IEKF and
IUKFs can have difficulties finding a good search direction.
For this strong nonlinearity LM and QN-based filters are the
most promising candidates, especially QN-IUKF which has
the smallest RMSE. The IPLFs does not promise much here
and would probably benefit from a guided search using a cost
function.

In conclusion, in the evaluated examples in this paper, the
IEKFs and IUKFs gives similar results in most examples
highlighting that the GN interpretation is indeed applicable
to IUKF. The choice of method could therefore be motivated
based on other aspects such as, e.g., simpler implementation
without derivatives using IUKFs or fewer computations using
IEKFs.

For future work the different properties of the IUKF*s,
IUKFs, IPLFs and IPLF* should be studied. The effect on
estimator performance using different sigma point methods
and damped IPLFs [19] should be analyzed further. Work
in the direction of iterated extended Kalman smoothers, [33],
could perhaps be utilized to yield the unscented counterpart.
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