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Fig. 4: Flow-chart of the measurement pipeline describing the entire experimental procedure. Window Length [s] Window Length [s] Window Length [s] (mono/dia, dia/mono).

® o
|
o o @ o
References: 1. O'Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B. G., Slaney, M., Shamma, S. A., and Lalor, E. C. (2015). “Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG”, Cerebral Cortex 25. 2. Das, N., Bertrand, A., and Francart, T. (2018). “EEG-based auditory attention detection: boundary conditions for background noise and speaker positions”, Journal of . I e ; e a r( e I I re

Neural Engineering 15. 3. Fuglsang, S. A., Dau, T., and Hjortkjeer, J. (2017). “Noise-robust cortical tracking of attended speech in real-world acoustic scenes”, Neurolmage 156, 435-444. 4. Crosse, M. J., Di Liberto, G. M., Bednar, A., and Lalor, E. C. (2016). “The Multivariate Temporal Response Function (nTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli”, Frontiers in Human Neuroscience 10, 1-14. 5. Jaeger, M.,
Mirkovic, B., Bleichner, M. G., and Debener, S. (2020). “Decoding the Attended Speaker From EEG Using Adaptive Evaluation Intervals Captures Fluctuations in Attentional Listening”, Frontiers in Neuroscience 14, 1-16. P c RT O F O _I_ | C O N



