Limitations of Speech Reception Threshold (SRT) as an outcome measure in hearing-aid research

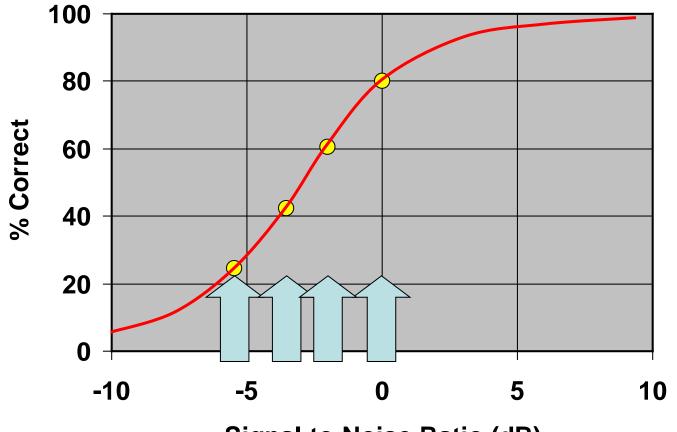
Graham Naylor

Oticon A/S

Why the fuss?

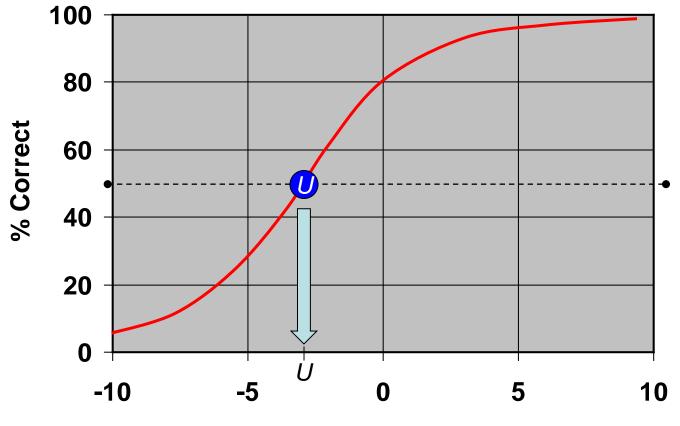
- Harvey Dillon, IHCON 2006 summing-up
 - "Look forward to a time when performance differences between HA systems are consistently characterised in dB. That will give us a common basis for comparisons"
- HA systems becoming increasingly non-linear
 - increasingly important to do the right measurement
- Spread of convenient & standardised SRT procedures
 - increasingly easy to do the (wrong) measurement

Plan


- What "SRT" am I talking about?
- Factors affecting SRT (unaided)
- Potential consequences for SRT (outcome)
- Non-linear hearing aid (HA) systems
- Why is SRT nevertheless so attractive?
- What to do?

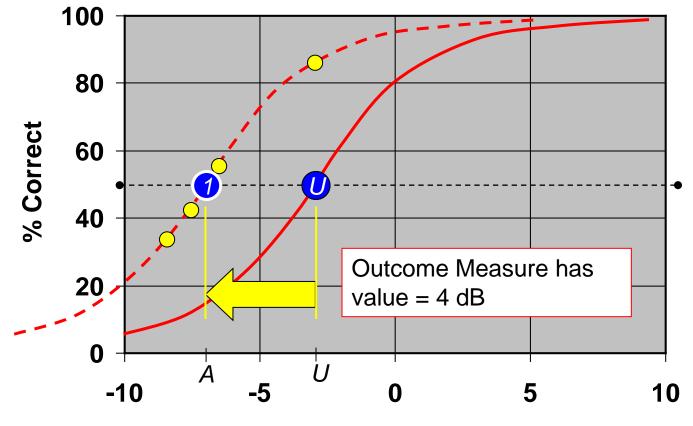
SRT as a diagnostic measure

• dB SPL or dB SNR ?

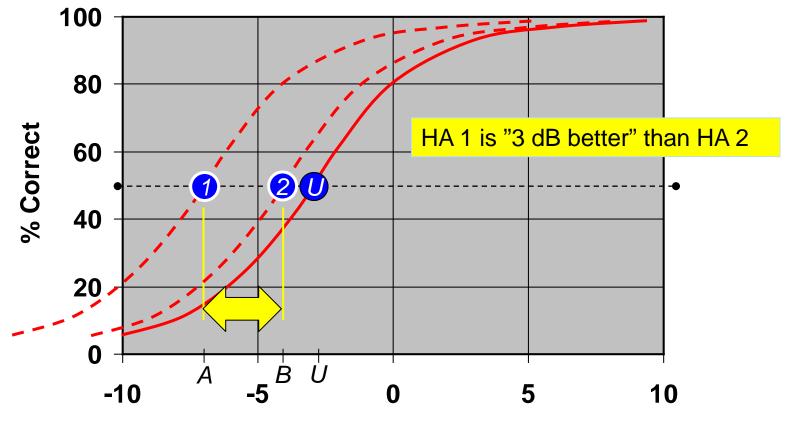


SRT determination (unaided)

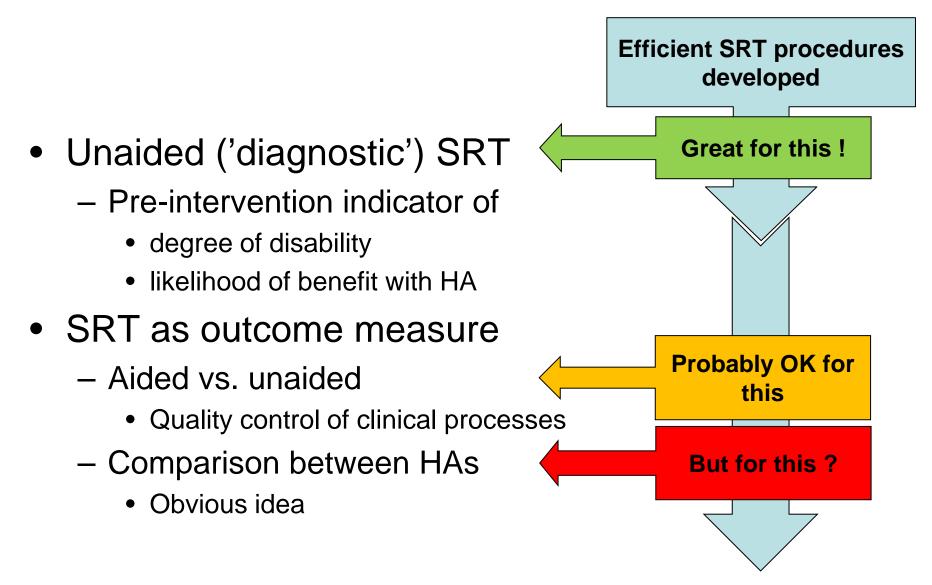
Signal-to-Noise Ratio (dB)


SRT determination (unaided)

Signal-to-Noise Ratio (dB)


SRT as an outcome measure

The aided SRT outcome for HA 1


Signal-to-Noise Ratio (dB)

Comparing HA 1 vs. HA 2

Signal-to-Noise Ratio (dB)

SRT in different arenas

Plan

- What "SRT" am I talking about?
- Factors affecting SRT (unaided)

SRT outcome measure

SRT (unaided)

Effects of some parameters "orthogonal"

Article X: Stated

"Changing factor Y in the test protocol has the effect of moving the SRT over a range of Z dB"

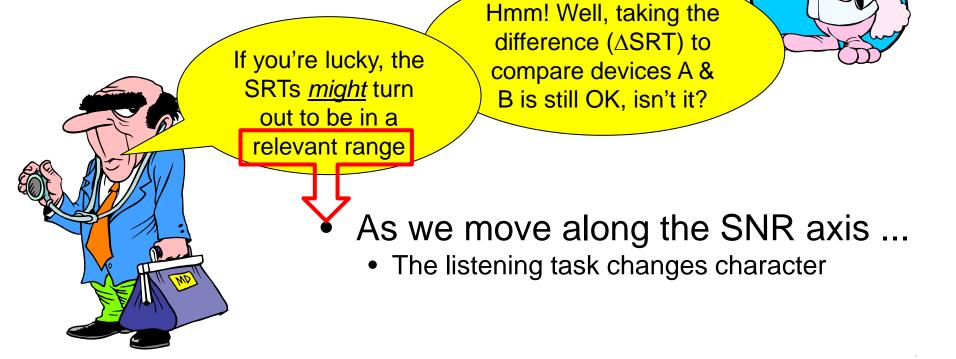
(Easily interpreted as)

"The underlying psychometric function is shifted by Z dB".

Potential consequences for SRT (outcome)

- SRT obtained for a given HA system may be
 - determined more by the lab's habitual protocol than by the phenomenon being studied

OR

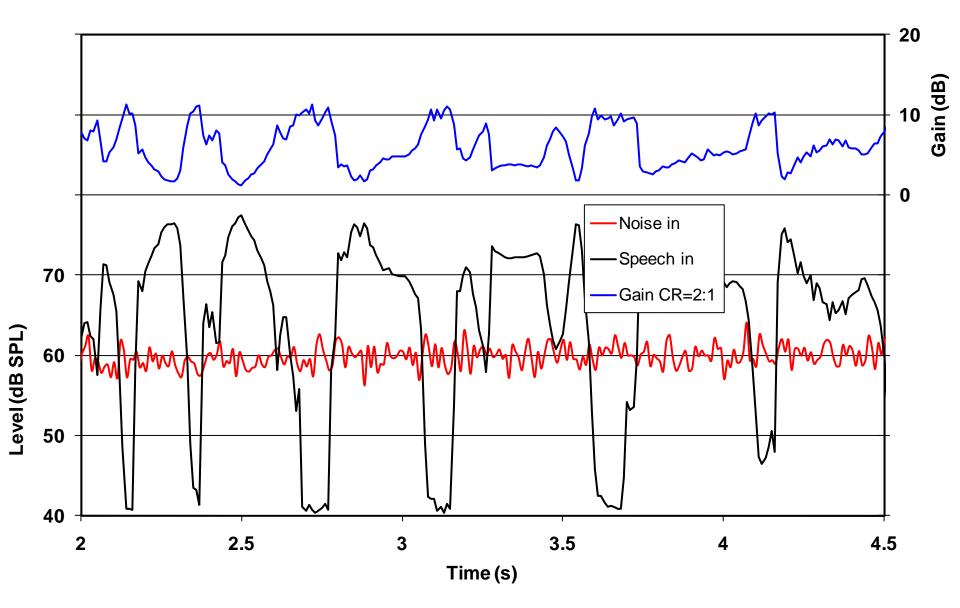

- as desired, by adjusting the protocol.

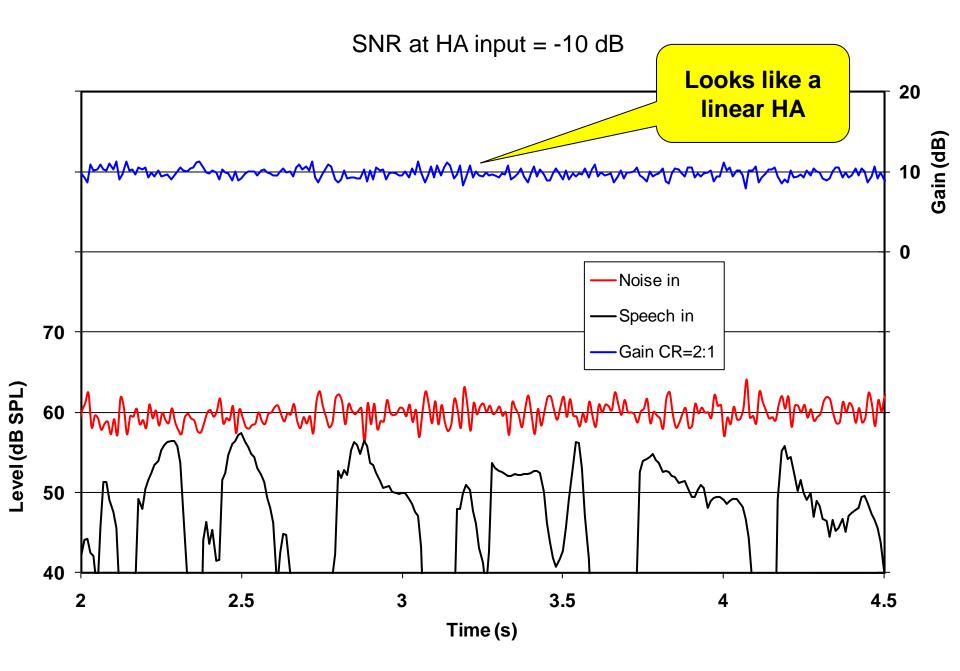
Effects of some parameters

Parameter	Choices				Effect (dB)
Scoring	Sentences	Words			3
Criterion %	50 %	80 %			4
Masker type	Steady	Mod.	Talker Qo	Talker QQ	10
Target language	Native	Second			6
Sentence context	High	Low			5
Target talker intellig.	High	Low	You must be joking !		1
Room	Dead	Reverb			6
Target/Masker location	Co-located	Separated			7
Response set size	4	32	1000		6
These parameters are "orthogonal", so we can add the effects					

How can that be ?

- Changing parameters is *NOT* equivalent to a parallel shift of an 'underlying PMF'
 - f(a,b,c,...) ≠ g(a) h(b) j(c)...
 - 'listening' task changes with listening conditions


Plan


- What "SRT" am I talking about?
- Factors affecting SRT (unaided)
- Potential consequences for SRT (outcome)
- Non-linear hearing aid (HA) systems

Non-linear hearing aids

- Behave differently depending on input signal
 thus behaviour depends on SNR at input
- Types of nonlinearity (examples)
 - Noise Reduction
 - controlled by modulation-based estimate of Voice-to-Noise Ratio
 - Steering of directional processing
 - based on Direction-Of-Arrival estimation
 - Binary Masks
 - based on SNR estimates in Time x Freq cells
 - Dynamic range compression
 - Example: fast-acting WDRC at +10 and -10 dB input SNR

SNR at HA input = +10 dB

So far, so ...

- Problems, problems
 - Untenable assumption of 'underlying PMF'
 - Non-linearity of HAs
- It matters what SNR we test at
- This is not really news to anyone ...
 - but we still go on using SRT without constraining the SNR.

Why is SRT so attractive, despite these problems?

- Always gives a result with convenient statistical properties
- Can be made relatively fast for a given repeatibility
- Nobody has told us what SNRs we should be designing HA systems to work in

- so guilty conscience does not kick in

 No catastrophic wrong conclusions documented so far

- but there may be some candidates ...

Plan

- What "SRT" am I talking about?
- Factors affecting SRT (unaided)
- Potential consequences for SRT (outcome)
- Non-linear hearing aid (HA) systems
- Why is SRT nevertheless so attractive?
- What to do?

• Carry on using SRT ... with care

Appropriate respect for the SNR confound

Increasing hassle

- Carry on using SRT ... with care
- Find out what SNRs really occur in what HA use situations, and use this to
 - (a) specify HA feature operation during design and
 - (b) prescribe SNR ranges for testing the feature
 - Pearsons et al 1977 NOT adequate basis

- Carry on using SRT ... with care
- Find out what SNRs really occur in what HA use situations
- "Constrained SRT testing"
 - manipulate protocol to ensure operation at appropriate SNR for reference condition: then ∆SRT is probably an OK measure for a comparison
 - (maybe) do it for each individual listener
 - manipulations of protocol must not be of a sort which will affect the HA system operation, e.g.
 - Response set size
 - Repetitions of stimulus
 - Scoring rules, etc. etc.

- Carry on using SRT ... with care
- Find out what SNRs really occur in what HA use situations
- "Constrained SRT testing"
- Accept or deal with ceiling/floor effects
 - manipulate protocol to ensure operation at appropriate SNR for reference condition: then measure Δ %-correct for test condition instead of Δ SRT
 - 100% is 100%
 - Two HA systems yielding 100% (or 0%) *are equally good* within the domain of the speech test being used.

- Carry on using SRT ... with care
- Find out what SNRs really occur in what HA use situations
- "Constrained SRT testing"
- Accept or deal with ceiling/floor effects
- Measure complete PMFs (per individual listener)
 Overkill ?

Plan

- What "SRT" am I talking about?
- Factors affecting SRT (unaided)
- Potential consequences for SRT (outcome)
- Non-linear hearing aid (HA) systems
- Why is SRT nevertheless so attractive?
- What to do?

Summing up

- Good methods for 'diagnostic SRT' – may be risky to use as Outcome Measures
- Assumption of // underlying PMF is faulty

 absurd range of apparently possible SRTs
- Nonlinear HAs
 - behave differently at different input SNRs
- We need to be deciding what SNR range to test at before testing

– some suggestions (no ready solutions)

• Work needed to chart real-life SNRs.

Effect of %-age criterion

- Realistically we wouldn't vary over whole 0
 <-> 100
 - conservative, 50 .. 80 %
 - Pichora-Fuller 1995: 5 dB
 - Wagener & Brand 2005: 2 dB
 - Say 3.5 dB

Sentence context

 changing from high-context to low-context sentences = 5 dB (Pichora-Fuller 1995)

Scoring words vs. sentences

- Low-context sentences (e.g. Oldenburg)
 - Ps = Pw ** 3.96 (Bronkhorst W & B 2002, Boothroyd & Nittrouer 1988)
 - -50% words = 6% sentences (!!)
 - -50% sentences = 84% words
 - 50% words -> 50% sentences requires 4 dB
 - for corpus with steep pmf (Wagener, Jovassen etal 2003)
- Less for higher-context sentences
- Say 3
- ?? what about scoring phonemes

Changing talker

highly-intelligible to a less-intelligible talker
 – ca. 20% (Cox et.al. 1987a)
 – = 20/12 = 1.7 dB (Cox et.al. 1987b)

Noise type

- Steady-state vs. modulated
 - (Wagener & Brand 2005, many others ???refs),
 - Controversy
 - "no effect" -> "??? dB" vs. "depends on SNR"
 - take your pick! Bernstein & Grant 2009
 - Conservative = 0
- ... vs. N talkers
 - Gender (7..11 dB, Festen & Plomp 1990)

Language

- Bilinguals
 - in s/s noise,
 - 9 dB (Stuart et al 2010)
 - 3 dB (Nilsson et al 1992)
 - babble, 6 dB (Mayo et al 1997)

Acoustics of setup

- Monotic vs. diotic vs. dichotic
- Co-located S & N vs. spatially separated
 - Neher ISAAR 2007 NH 10 dB, HI 7 dB (LR) sp-on-sp
 - Bronkhorst & Plomp 1990 6.5 dB s/s noise 1 masker
 - Marrone ISAAR 2007 NH 10 dB, HI 4 dB (LR) sp-on-sp
 - say 7
- Reverberation
 - Arweiler ISAAR 2007 ca. 4 dB
 - Plomp 1976 6-10 dB
 - say 6

Response set size

32 vs. 1000 ca. 6 dB (Bernstein pers. comm.)

